Skip to content
项目
群组
代码片段
帮助
正在加载...
登录
切换导航
F
freeswitch
项目
项目
详情
活动
周期分析
仓库
仓库
文件
提交
分支
标签
贡献者
分枝图
比较
统计图
议题
0
议题
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
CI / CD
CI / CD
流水线
作业
日程
统计图
Wiki
Wiki
代码片段
代码片段
成员
成员
折叠边栏
关闭边栏
活动
分枝图
统计图
创建新议题
作业
提交
议题看板
打开侧边栏
张华
freeswitch
Commits
a0180288
提交
a0180288
authored
12月 02, 2016
作者:
Anthony Minessale
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
FS-9803 #resolve [Add support for arbitrary data as hash keys]
上级
44d69cb2
隐藏空白字符变更
内嵌
并排
正在显示
5 个修改的文件
包含
450 行增加
和
12 行删除
+450
-12
ks_hash.h
libs/libks/src/include/ks_hash.h
+349
-1
ks_platform.h
libs/libks/src/include/ks_platform.h
+16
-0
ks_types.h
libs/libks/src/include/ks_types.h
+1
-1
ks_hash.c
libs/libks/src/ks_hash.c
+43
-9
testhash.c
libs/libks/test/testhash.c
+41
-1
没有找到文件。
libs/libks/src/include/ks_hash.h
浏览文件 @
a0180288
...
...
@@ -106,7 +106,8 @@ typedef enum {
KS_HASH_MODE_CASE_INSENSITIVE
,
KS_HASH_MODE_INT
,
KS_HASH_MODE_INT64
,
KS_HASH_MODE_PTR
KS_HASH_MODE_PTR
,
KS_HASH_MODE_ARBITRARY
}
ks_hash_mode_t
;
...
...
@@ -157,6 +158,7 @@ KS_DECLARE(int) ks_hash_insert_ex(ks_hash_t *h, void *k, void *v, ks_hash_flag_t
KS_DECLARE
(
void
)
ks_hash_set_flags
(
ks_hash_t
*
h
,
ks_hash_flag_t
flags
);
KS_DECLARE
(
void
)
ks_hash_set_keysize
(
ks_hash_t
*
h
,
ks_size_t
keysize
);
KS_DECLARE
(
void
)
ks_hash_set_destructor
(
ks_hash_t
*
h
,
ks_hash_destructor_t
destructor
);
/*****************************************************************************
...
...
@@ -318,6 +320,352 @@ static __inline uint32_t ks_hash_default_ci(void *ky)
return
hash
;
}
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().
If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
4 6 8 16 19 4
9 15 3 18 27 15
14 9 3 7 17 3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta. I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.
This does not achieve avalanche. There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a. The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.
This allows some parallelism. Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism. I did what I could. Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().
If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
4 6 8 16 19 4
9 15 3 18 27 15
14 9 3 7 17 3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta. I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.
This does not achieve avalanche. There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a. The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.
This allows some parallelism. Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism. I did what I could. Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*
-------------------------------------------------------------------------------
final -- final mixing of 3 32-bit values (a,b,c) into c
Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different. This was tested for
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
These constants passed:
14 11 25 16 4 14 24
12 14 25 16 4 14 24
and these came close:
4 8 15 26 3 22 24
10 8 15 26 3 22 24
11 8 15 26 3 22 24
-------------------------------------------------------------------------------
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c,4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
-------------------------------------------------------------------------------
hashlittle() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
length : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Two keys differing by one or two bits will have
totally different hash values.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
-------------------------------------------------------------------------------
*/
static
__inline
uint32_t
ks_hash_default_arbitrary
(
const
void
*
key
,
ks_size_t
length
,
uint32_t
initval
)
{
uint32_t
a
,
b
,
c
;
/* internal state */
union
{
const
void
*
ptr
;
ks_size_t
i
;
}
u
;
/* needed for Mac Powerbook G4 */
/* Set up the internal state */
a
=
b
=
c
=
0xdeadbeef
+
((
uint32_t
)
length
)
+
initval
;
u
.
ptr
=
key
;
if
(
KS_LITTLE_ENDIAN
&&
((
u
.
i
&
0x3
)
==
0
))
{
const
uint32_t
*
k
=
(
const
uint32_t
*
)
key
;
/* read 32-bit chunks */
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
k
[
0
];
b
+=
k
[
1
];
c
+=
k
[
2
];
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
3
;
}
/*----------------------------- handle the last (probably partial) block */
/*
* "k[2]&0xffffff" actually reads beyond the end of the string, but
* then masks off the part it's not allowed to read. Because the
* string is aligned, the masked-off tail is in the same word as the
* rest of the string. Every machine with memory protection I've seen
* does it on word boundaries, so is OK with this. But VALGRIND will
* still catch it and complain. The masking trick does make the hash
* noticably faster for short strings (like English words).
*/
#ifndef VALGRIND
switch
(
length
)
{
case
12
:
c
+=
k
[
2
];
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
11
:
c
+=
k
[
2
]
&
0xffffff
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
10
:
c
+=
k
[
2
]
&
0xffff
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
9
:
c
+=
k
[
2
]
&
0xff
;
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
8
:
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
7
:
b
+=
k
[
1
]
&
0xffffff
;
a
+=
k
[
0
];
break
;
case
6
:
b
+=
k
[
1
]
&
0xffff
;
a
+=
k
[
0
];
break
;
case
5
:
b
+=
k
[
1
]
&
0xff
;
a
+=
k
[
0
];
break
;
case
4
:
a
+=
k
[
0
];
break
;
case
3
:
a
+=
k
[
0
]
&
0xffffff
;
break
;
case
2
:
a
+=
k
[
0
]
&
0xffff
;
break
;
case
1
:
a
+=
k
[
0
]
&
0xff
;
break
;
case
0
:
return
c
;
/* zero length strings require no mixing */
}
#else
/* make valgrind happy */
k8
=
(
const
uint8_t
*
)
k
;
switch
(
length
)
{
case
12
:
c
+=
k
[
2
];
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
11
:
c
+=
((
uint32_t
)
k8
[
10
])
<<
16
;
/* fall through */
case
10
:
c
+=
((
uint32_t
)
k8
[
9
])
<<
8
;
/* fall through */
case
9
:
c
+=
k8
[
8
];
/* fall through */
case
8
:
b
+=
k
[
1
];
a
+=
k
[
0
];
break
;
case
7
:
b
+=
((
uint32_t
)
k8
[
6
])
<<
16
;
/* fall through */
case
6
:
b
+=
((
uint32_t
)
k8
[
5
])
<<
8
;
/* fall through */
case
5
:
b
+=
k8
[
4
];
/* fall through */
case
4
:
a
+=
k
[
0
];
break
;
case
3
:
a
+=
((
uint32_t
)
k8
[
2
])
<<
16
;
/* fall through */
case
2
:
a
+=
((
uint32_t
)
k8
[
1
])
<<
8
;
/* fall through */
case
1
:
a
+=
k8
[
0
];
break
;
case
0
:
return
c
;
}
#endif
/* !valgrind */
}
else
if
(
KS_LITTLE_ENDIAN
&&
((
u
.
i
&
0x1
)
==
0
))
{
const
uint16_t
*
k
=
(
const
uint16_t
*
)
key
;
/* read 16-bit chunks */
const
uint8_t
*
k8
;
/*--------------- all but last block: aligned reads and different mixing */
while
(
length
>
12
)
{
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
c
+=
k
[
4
]
+
(((
uint32_t
)
k
[
5
])
<<
16
);
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
6
;
}
/*----------------------------- handle the last (probably partial) block */
k8
=
(
const
uint8_t
*
)
k
;
switch
(
length
)
{
case
12
:
c
+=
k
[
4
]
+
(((
uint32_t
)
k
[
5
])
<<
16
);
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
11
:
c
+=
((
uint32_t
)
k8
[
10
])
<<
16
;
/* fall through */
case
10
:
c
+=
k
[
4
];
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
9
:
c
+=
k8
[
8
];
/* fall through */
case
8
:
b
+=
k
[
2
]
+
(((
uint32_t
)
k
[
3
])
<<
16
);
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
7
:
b
+=
((
uint32_t
)
k8
[
6
])
<<
16
;
/* fall through */
case
6
:
b
+=
k
[
2
];
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
5
:
b
+=
k8
[
4
];
/* fall through */
case
4
:
a
+=
k
[
0
]
+
(((
uint32_t
)
k
[
1
])
<<
16
);
break
;
case
3
:
a
+=
((
uint32_t
)
k8
[
2
])
<<
16
;
/* fall through */
case
2
:
a
+=
k
[
0
];
break
;
case
1
:
a
+=
k8
[
0
];
break
;
case
0
:
return
c
;
/* zero length requires no mixing */
}
}
else
{
/* need to read the key one byte at a time */
const
uint8_t
*
k
=
(
const
uint8_t
*
)
key
;
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
while
(
length
>
12
)
{
a
+=
k
[
0
];
a
+=
((
uint32_t
)
k
[
1
])
<<
8
;
a
+=
((
uint32_t
)
k
[
2
])
<<
16
;
a
+=
((
uint32_t
)
k
[
3
])
<<
24
;
b
+=
k
[
4
];
b
+=
((
uint32_t
)
k
[
5
])
<<
8
;
b
+=
((
uint32_t
)
k
[
6
])
<<
16
;
b
+=
((
uint32_t
)
k
[
7
])
<<
24
;
c
+=
k
[
8
];
c
+=
((
uint32_t
)
k
[
9
])
<<
8
;
c
+=
((
uint32_t
)
k
[
10
])
<<
16
;
c
+=
((
uint32_t
)
k
[
11
])
<<
24
;
mix
(
a
,
b
,
c
);
length
-=
12
;
k
+=
12
;
}
/*-------------------------------- last block: affect all 32 bits of (c) */
switch
(
length
)
/* all the case statements fall through */
{
case
12
:
c
+=
((
uint32_t
)
k
[
11
])
<<
24
;
case
11
:
c
+=
((
uint32_t
)
k
[
10
])
<<
16
;
case
10
:
c
+=
((
uint32_t
)
k
[
9
])
<<
8
;
case
9
:
c
+=
k
[
8
];
case
8
:
b
+=
((
uint32_t
)
k
[
7
])
<<
24
;
case
7
:
b
+=
((
uint32_t
)
k
[
6
])
<<
16
;
case
6
:
b
+=
((
uint32_t
)
k
[
5
])
<<
8
;
case
5
:
b
+=
k
[
4
];
case
4
:
a
+=
((
uint32_t
)
k
[
3
])
<<
24
;
case
3
:
a
+=
((
uint32_t
)
k
[
2
])
<<
16
;
case
2
:
a
+=
((
uint32_t
)
k
[
1
])
<<
8
;
case
1
:
a
+=
k
[
0
];
break
;
case
0
:
return
c
;
}
}
final
(
a
,
b
,
c
);
return
c
;
}
...
...
libs/libks/src/include/ks_platform.h
浏览文件 @
a0180288
...
...
@@ -56,6 +56,22 @@ KS_BEGIN_EXTERN_C
#define KS_64BIT 1
#endif
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
__BYTE_ORDER == __LITTLE_ENDIAN) || \
(defined(i386) || defined(__i386__) || defined(__i486__) || \
defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
# define KS_LITTLE_ENDIAN 1
# define KS_BIG_ENDIAN 0
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
__BYTE_ORDER == __BIG_ENDIAN) || \
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
# define KS_LITTLE_ENDIAN 0
# define KS_BIG_ENDIAN 1
#else
# define KS_LITTLE_ENDIAN 0
# define KS_BIG_ENDIAN 0
#endif
#include <stdarg.h>
#include <time.h>
#include <stdarg.h>
...
...
libs/libks/src/include/ks_types.h
浏览文件 @
a0180288
...
...
@@ -75,7 +75,7 @@ KS_BEGIN_EXTERN_C
typedef
uint16_t
ks_port_t
;
typedef
size_t
ks_size_t
;
typedef
unsigned
char
ks_byte_t
;
typedef
enum
{
KS_STATUS_SUCCESS
,
KS_STATUS_FAIL
,
...
...
libs/libks/src/ks_hash.c
浏览文件 @
a0180288
...
...
@@ -64,6 +64,8 @@ struct ks_hash {
ks_rwl_t
*
rwl
;
ks_mutex_t
*
mutex
;
uint32_t
readers
;
ks_size_t
keysize
;
ks_hash_mode_t
mode
;
};
/*****************************************************************************/
...
...
@@ -72,13 +74,22 @@ struct ks_hash {
static
inline
unsigned
int
hash
(
ks_hash_t
*
h
,
void
*
k
)
{
/* Aim to protect against poor hash functions by adding logic here
* - logic taken from java 1.4 ks_hash source */
unsigned
int
i
=
h
->
hashfn
(
k
);
i
+=
~
(
i
<<
9
);
i
^=
((
i
>>
14
)
|
(
i
<<
18
));
/* >>> */
i
+=
(
i
<<
4
);
i
^=
((
i
>>
10
)
|
(
i
<<
22
));
/* >>> */
unsigned
int
i
;
if
(
h
->
mode
==
KS_HASH_MODE_ARBITRARY
)
{
i
=
ks_hash_default_arbitrary
(
k
,
h
->
keysize
,
13
);
}
else
{
i
=
h
->
hashfn
(
k
);
}
/* Aim to protect against poor hash functions by adding logic here
* - logic taken from java 1.4 hash source */
i
+=
~
(
i
<<
9
);
i
^=
((
i
>>
14
)
|
(
i
<<
18
));
/* >>> */
i
+=
(
i
<<
4
);
i
^=
((
i
>>
10
)
|
(
i
<<
22
));
/* >>> */
return
i
;
}
...
...
@@ -146,6 +157,11 @@ KS_DECLARE(void) ks_hash_set_flags(ks_hash_t *h, ks_hash_flag_t flags)
h
->
flags
=
flags
;
}
KS_DECLARE
(
void
)
ks_hash_set_keysize
(
ks_hash_t
*
h
,
ks_size_t
keysize
)
{
h
->
keysize
=
keysize
;
}
KS_DECLARE
(
void
)
ks_hash_set_destructor
(
ks_hash_t
*
h
,
ks_hash_destructor_t
destructor
)
{
h
->
destructor
=
destructor
;
...
...
@@ -159,6 +175,7 @@ ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
{
ks_hash_t
*
h
;
unsigned
int
pindex
,
size
=
primes
[
0
];
ks_size_t
keysize
=
0
;
switch
(
mode
)
{
case
KS_HASH_MODE_CASE_INSENSITIVE
:
...
...
@@ -170,18 +187,24 @@ ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
ks_assert
(
eqf
==
NULL
);
hashf
=
ks_hash_default_int
;
eqf
=
ks_hash_equalkeys_int
;
keysize
=
4
;
break
;
case
KS_HASH_MODE_INT64
:
ks_assert
(
hashf
==
NULL
);
ks_assert
(
eqf
==
NULL
);
hashf
=
ks_hash_default_int64
;
eqf
=
ks_hash_equalkeys_int64
;
keysize
=
8
;
break
;
case
KS_HASH_MODE_PTR
:
ks_assert
(
hashf
==
NULL
);
ks_assert
(
eqf
==
NULL
);
hashf
=
ks_hash_default_ptr
;
eqf
=
ks_hash_equalkeys_ptr
;
keysize
=
sizeof
(
void
*
);
break
;
case
KS_HASH_MODE_ARBITRARY
:
keysize
=
sizeof
(
void
*
);
break
;
default
:
break
;
...
...
@@ -210,6 +233,8 @@ ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
h
->
pool
=
pool
;
h
->
flags
=
flags
;
h
->
destructor
=
destructor
;
h
->
keysize
=
keysize
;
h
->
mode
=
mode
;
if
((
flags
&
KS_HASH_FLAG_RWLOCK
))
{
ks_rwl_create
(
&
h
->
rwl
,
h
->
pool
);
...
...
@@ -303,6 +328,15 @@ ks_hash_count(ks_hash_t *h)
return
h
->
entrycount
;
}
static
int
key_equals
(
ks_hash_t
*
h
,
void
*
k1
,
void
*
k2
)
{
if
(
h
->
mode
==
KS_HASH_MODE_ARBITRARY
)
{
return
!
memcmp
(
k1
,
k2
,
h
->
keysize
);
}
else
{
return
h
->
eqfn
(
k1
,
k2
);
}
}
static
void
*
_ks_hash_remove
(
ks_hash_t
*
h
,
void
*
k
,
unsigned
int
hashvalue
,
unsigned
int
index
)
{
/* TODO: consider compacting the table when the load factor drops enough,
* or provide a 'compact' method. */
...
...
@@ -316,7 +350,7 @@ static void * _ks_hash_remove(ks_hash_t *h, void *k, unsigned int hashvalue, uns
e
=
*
pE
;
while
(
NULL
!=
e
)
{
/* Check hash value to short circuit heavier comparison */
if
((
hashvalue
==
e
->
h
)
&&
(
h
->
eqfn
(
k
,
e
->
k
)))
{
if
((
hashvalue
==
e
->
h
)
&&
(
key_equals
(
h
,
k
,
e
->
k
)))
{
*
pE
=
e
->
next
;
h
->
entrycount
--
;
v
=
e
->
v
;
...
...
@@ -457,7 +491,7 @@ ks_hash_search(ks_hash_t *h, void *k, ks_locked_t locked)
e
=
h
->
table
[
index
];
while
(
NULL
!=
e
)
{
/* Check hash value to short circuit heavier comparison */
if
((
hashvalue
==
e
->
h
)
&&
(
h
->
eqfn
(
k
,
e
->
k
)))
{
if
((
hashvalue
==
e
->
h
)
&&
(
key_equals
(
h
,
k
,
e
->
k
)))
{
v
=
e
->
v
;
break
;
}
...
...
libs/libks/test/testhash.c
浏览文件 @
a0180288
...
...
@@ -120,16 +120,56 @@ int test2(void)
return
1
;
}
#include "sodium.h"
#define TEST3_SIZE 20
int
test3
(
void
)
{
ks_pool_t
*
pool
;
ks_hash_t
*
hash
;
ks_byte_t
data
[
TEST3_SIZE
];
ks_byte_t
data2
[
TEST3_SIZE
];
ks_byte_t
data3
[
TEST3_SIZE
];
char
*
A
,
*
B
,
*
C
;
ks_pool_open
(
&
pool
);
ks_hash_create
(
&
hash
,
KS_HASH_MODE_ARBITRARY
,
KS_HASH_FLAG_NONE
,
pool
);
ks_hash_set_keysize
(
hash
,
TEST3_SIZE
);
randombytes_buf
(
data
,
sizeof
(
data
));
randombytes_buf
(
data2
,
sizeof
(
data2
));
ks_hash_insert
(
hash
,
data
,
"FOO"
);
ks_hash_insert
(
hash
,
data2
,
"BAR"
);
ks_hash_insert
(
hash
,
data3
,
"BAZ"
);
A
=
(
char
*
)
ks_hash_search
(
hash
,
data
,
KS_UNLOCKED
);
B
=
(
char
*
)
ks_hash_search
(
hash
,
data2
,
KS_UNLOCKED
);
C
=
(
char
*
)
ks_hash_search
(
hash
,
data3
,
KS_UNLOCKED
);
printf
(
"RESULT [%s][%s][%s]
\n
"
,
A
,
B
,
C
);
ks_hash_destroy
(
&
hash
);
ks_pool_close
(
&
pool
);
return
!
strcmp
(
A
,
"FOO"
)
&&
!
strcmp
(
B
,
"BAR"
)
&&
!
strcmp
(
C
,
"BAZ"
);
}
int
main
(
int
argc
,
char
**
argv
)
{
ks_init
();
srand
((
unsigned
)(
time
(
NULL
)
-
(
unsigned
)(
intptr_t
)
ks_thread_self
()));
plan
(
2
);
plan
(
3
);
ok
(
test1
());
ok
(
test2
());
ok
(
test3
());
ks_shutdown
();
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论